Light (Sterile) Neutrinos and Cosmology

Maxim Perelstein (Cornell)

in collaboration with

Z. Chacko, Lawrence Hall, and Steven Oliver (LBNL+UC Berkeley)

PRL94:111801, 2005 [arxiv:hep-ph/0405067]

Neutrino Oscillations

- \circ Solar + KamLAND: $V_e \leftarrow V_{\mu/\tau} \Delta m_s^2 \approx 4 \times 10^{-5} \text{ eV}^2$
- Atmospheric: $\nu_{\mu} \leftrightarrow \nu_{\tau}$ $\Delta m_a^2 \approx 3 \times 10^{-3} \text{ eV}^2$
- Laboratory (LSND): $\bar{\nu}_{\mu} \leftrightarrow \bar{\nu}_{e}$ $\Delta m_{\rm LSND}^{2} \approx 1 \ {\rm eV}^{2}$
- LSND result to be tested by miniBooNe, late 2005
- 3-neutrino framework cannot incorporate all three results simultaneously!
- Simplest alternative: add 1 or more sterile neutrino(s): $m_s \approx 1 \text{ eV}$; $\text{Prob}(\nu_\mu \to \nu_s \to \nu_e) \approx 0.3\%$

Why Are Neutrinos Light?

The "standard" answer: see-saw mechanism

$$\mathcal{L}_{\nu} = \lambda_{\nu} \bar{L} H n + \frac{M_n}{2} n^c n + \text{ h.c.}$$

$$\lambda_{\nu}v \sim M_D \sim 100 \text{ GeV}, \quad M_n \sim M_{\text{GUT}} \sim 10^{15} \text{ GeV}$$

 \bullet Diagonalize: $m_{\nu} \sim M_D^2/M_n \sim 10^{-2} \; \mathrm{eV}$ (active)

$$m_n \sim M_n \sim 10^{15} \; \mathrm{GeV} \; \; \text{(sterile)}$$

- Attractive and minimal, but not tested!
- Light (e.g. LSND) sterile neutrino requires an alternative mechanism!

Light Neutrinos From Global Symmetries

- Example: U(1): Q(n) = +1, Q(L) = Q(H) = 0
- Introduce additional scalar fields allowing for nonrenormalizable neutrino mass terms

Example:
$$Q(\Phi) = -1$$

$$\mathcal{L} = \frac{\Phi}{\Lambda} \bar{L} H n \, + \, \frac{\Phi^2}{\Lambda} n n$$

$$\langle H \rangle \sim \langle \Phi \rangle \sim v$$
 $m_{\nu} \sim v \langle \Phi \rangle / \Lambda \ll v$ $m_{s} \sim m_{a}$

"Late-Time" Neutrino Masses

- The original models [early 80's] assumed $\langle \Phi \rangle \sim v$
- This does not need to be the case: $\langle \Phi \rangle \ll v$ is $\mathbb{C}^{|V|}$
- Example: $\Phi: Q(\Phi)=-1; S: Q(S)=-1$ $\mathcal{L}_{\nu}=\frac{\Phi}{\Lambda}\bar{L}Hn+\frac{\Phi}{\Lambda}Snn+ \text{ h.c.}$

$$\langle H \rangle \sim \langle S \rangle \sim v$$
 \Longrightarrow $m_{\nu} \sim v \langle \Phi \rangle / \Lambda \ll v$ $m_{s} \sim m_{a}$

- Naturalness is a concern: can $\langle \Phi \rangle \ll v$ be stabilized against radiative corrections?
- Answer: YES, by SUSY broken at the TeV scale

Non-Standard Neutrino Cosmology

- Oscillation experiments distinguish between see-saw and alternative (e.g. "late-time") scenarios for light neutrino masses [see Andre de Gouvea's talk]
- Neutrino cosmology can be very different in the alternative scenario
- © Cosmological constraints on neutrino properties can be modified
- Explicit example: constraints on the LSND sterile neutrinos can be greatly relaxed!

Weirdness I: Late Time Phase Transition

- In the early universe, global symmetry is restored by thermal effects ($\langle \Phi \rangle = 0$) and neutrinos are massless do not smill ale
- The symmetry-breaking phase transition occurs (generically) at $T \sim \langle \Phi \rangle$
- If $\langle \Phi \rangle \ll v$, the phase transition can occur at late times (e.g., after the BBN) hence the name!

Weirdness II: Light (Pseudo) Goldstone Bosons

- Broken global symmetry yields Goldstone bosons (Majorons): $\Phi = e^{-iG/f} f$ $(f = \langle \Phi \rangle)$
- © G.B.s are if the global symmetry is exact, if some explicit violation (e.g. by gravitational effects) is present
- New light states can play a role in cosmology!

Example: LSND Sterile Neutrino vs. Cosmology

- © Oscillations \implies thermal abundance for ν_s in the early Universe ($T \ge 1 \text{ MeV}$)
- Big Bang Nucleosynthesis (BBN) constraint:
 - $N_{\nu}^{\text{eff}} < 3.4 \text{ at } 95\% \text{ c.l.} \Longrightarrow N_{\nu} \ge 4 \text{ is ruled out!}$
- Large Scale Structure + normalization from CMB:

no hot DM
$$\Longrightarrow$$
 $\sum m_{\nu} < 0.7 \text{ eV}$

Claim: sterile neutrino interpretation of LSND is inconsistent with cosmological data [Murayama, Pierce, hep-ph/0302131; Cirelli, Marandella, Strumia, Viscani, hep-ph/0403158; ...]

LSND Sterile Neutrino vs. Cosmology: Are We Sure?

- If the LSND result is correct, global symmetry is preferable to see-saw on theoretical grounds: it can explain
- If the phase transition occurs after the BBN,
 all neutrinos are massless at and before BBN
 no thermal abundance for part at BBN!
- Also $v_s \rightarrow v_a + \phi$ eliminates v_s contribution to Dark Matter avoid the LSS constraint! [see also Beacom, Bell, Dodelson, astro-ph/0404585]

Explicit Model I

- Start with a supersymmetric theory; need extra EW singlet -> NMSSM
- Add 3 right-handed neutrino superfields n +
 2 singlet fields ...
- Superpotential: $W^M = W_{NMSSM} + W_{sm}^M$

$$W_{\nu}^{M} = \lambda_{ij} l_{i} n_{j} h \frac{\phi}{M} + \frac{\kappa}{3} \phi^{3} + \tilde{\lambda}_{ij} n_{i} n_{j} s \frac{\bar{\phi}}{M} + \frac{\tilde{\kappa}}{3} \tilde{\phi}^{3}$$

This is unique under a set of discrete symmetries, \mathbb{Z}_3^3

Explicit Model II

Below the SUSY breaking and EWSB scales, the neutrino sector is described by

$$\mathcal{L}_{\nu}^{M} = g_{ij}\nu_{i}n_{j}\phi + \tilde{g}_{ij}n_{i}n_{j}\tilde{\phi} + \text{h.c.} + V(\phi, \tilde{\phi})$$
$$g = \langle h \rangle \lambda/M, \quad \tilde{g} = \langle s \rangle \tilde{\lambda}/\tilde{M}$$
$$V = -\mu^{2}|\phi|^{2} + \kappa^{2}|\phi|^{4} - \tilde{\mu}^{2}|\tilde{\phi}|^{2} + \tilde{\kappa}^{2}|\tilde{\phi}|^{4}$$

 $\begin{array}{ll} \text{ At low energies,} & m^D = g \left< \phi \right>, & m^M = \tilde{g} \left< \tilde{\phi} \right> \\ \text{[see Andre de Gouvea's talk]} & \\ \mathcal{L} \sim g_{\alpha\beta} \nu_\alpha' \nu_\beta' G + \tilde{g}_{\alpha\beta} \nu_\alpha' \nu_\beta' \tilde{G} \\ \end{array}$

Constraints on Parameters

- \odot Phase transition after the BBN -> $1.1 \le 1 \text{ MeV}$
- Neutrino masses: $m \sim gf \sim 0.1$ eV
 → $g \geq 10^{-7}$
- Two sectors: "hidden" [_____] and "visible" [everything else], coupled with strength ____

$$\Gamma(\nu_a \nu_a \leftrightarrow \nu_s \nu_s, \nu_a \nu_a \leftrightarrow \phi \phi, \ldots) < H @ T \ge \text{MeV}$$

$$g_{ij}, g_{i\alpha} \le 10^{-5}, g_{ij}\kappa, g_{i\alpha}\kappa \le 10^{-10} g_{ij}\tilde{g}_{ij}, g_{i\alpha}\tilde{g}_{i\alpha} \le 10^{-10}$$

Parameters and Naturalness

Summary of the constraints:

10 keV
$$\leq f \leq 1$$
 MeV, $10^{-7} \leq g \leq 10^{-5}$

- Supernova constraints on are in the similar range, but very model-dependent
- © Low f is natural: SUSY breaking scale in the hidden sector is suppressed: $f \sim M_{\rm SUSY}$
- © Low-scale SUSY breaking (e.g. gauge mediation) is required: f = 100 keV for $M_{\rm SUSY}^{\rm vis} = 1 \text{ TeV}$

Post-BBN Cosmology

After BBN, w decouple from the visible sector, and recouple to the hidden sector:

$$\Gamma(\nu\nu \to nn) \sim g T,$$

$$\Gamma > H \text{ at } T < T_{\text{rec}}$$

$$g \ge 10^{-7} \Longrightarrow T_{\text{rec}} > 1 \text{ eV}$$

- © Energy density in $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ is conserved during recoupling -> $\frac{1}{2}(\frac{1}{2})$ decreases
- \odot At $T<
 u_s$, sterile neutrinos decay: $u_s
 ightarrow
 u_a + G$
- The decays reheat $\nu_a + G$ sector -> enhanced relativistic energy density at CMB decoupling

Signatures in the CMB Spectrum

Total relativistic energy density is larger than in the SM:

N_G/N_s	1	2	3
2	3.15	3.28	3.40
3	3.12	3.23	3.33
8	3.06	3.11	3.17

Neutrinos do not free stream due to their coupling to Goldstones: e.g. $v_i \leftrightarrow v_j + G$

Signatures in the CMB Spectrum II

Non-free-streaming -> uniform shift in the peak positions at large [Bashinsky, Seljak, astro-ph/ 0310198]

$$\Delta l_n = 23.3 - 13.1 \left(\frac{g_{\nu}(3 - n_S)}{(3g_{\nu} + n_G)(1/N_{\nu, \text{CMB}} + .23)} \right)$$

Numerical analysis of a related scenario [Hannestad, astro-ph/0411475] - negative result BUT the scenario considered has substantially higher relativistic energy density $N_{\nu}^{\rm eff}=6.58$

Late-Time Neutrinos and Domain Wall Dark Energy

- A network of domain walls could account for the observed dark energy [Spergel, Buchel, astroph/9812022; Friedland, Murayama, MP, astro-ph/0205520]
- The required wall tension is about 100 keV same as the global symmetry breaking scale for late-time neutrinos!
- Neutrino mass and domain walls are created in the same late-time phase transition

Conclusions I

- Models with spontage by broken global symmetries provide an alternative to see-saw to explain smallness of neutrino masses
- Sterile and active neutrino masses are naturally at the same scale in these models
 -> attractive if LSND is right
- Neutrino cosmology is non-standard: light Goldstone bosons, possible late-time phase transition

Conclusions II

- Example: Cosmological constraints on the LSND sterile neutrino are not applicable in this scenario
- Phase transition
 BBN (10-100 keV) ->
 no oscillations into sterile before/during BBN
 -> no energy density constraint
- Sterile neutrinos unstable (v_s v_n + G) -> do not contibute to dark matter -> LSS bounds do not apply
- Interesting signatures in the CMB!